AHERA THREE YEAR ASBESTOS RE-INSPECTION

for

SKYLINE HIGH SCHOOL
1767 BLUESKY DRIVE
IDAHO FALLS, IDAHO 83402

Date of Completion
July 28, 2009

Prepared by:

Ms. Penny Weymiller
Environmental Safety & Health Engineer
Idaho Falls School District 91
690 John Adams Parkway
Idaho Falls, Idaho 83401
On July 28, 2009, Ms. Penny Weymiller, Environmental Safety & Health Engineer for Idaho Falls School District 91 completed an Asbestos Hazard Emergency Response Act (AHERA) Three Year Re-inspection for the Skyline High School, 1767 Bluesky Drive, Idaho Falls, Idaho. The building is owned and operated by the Local Education Agency (LEA) Idaho Falls School District 91. The building was visually inspected to identify all building materials that might contain asbestos and evaluate conditions of all known or assumed asbestos containing materials (ACM). All asbestos-containing materials were assessed for damage and potential for exposure.

The following table lists all currently existing asbestos-containing materials that have been identified in the building. Further information can be found later in the report.

Current Asbestos Locations

<table>
<thead>
<tr>
<th>Homogeneous Area Designation and Material</th>
<th>Location</th>
<th>Quantity</th>
<th>Asbestos Determination</th>
<th>Friability</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 – 12” Floor tile and mastic</td>
<td>Numerous 12’ tile patterns/colors throughout school</td>
<td>~ 9633 ft² tile</td>
<td>Sampled - ACM or Assumed Asbestos</td>
<td>Non-Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#2 – Fire Doors (Main Building)</td>
<td>Separating building areas or rooms and/or boiler room entrances</td>
<td>~ 20 Doors</td>
<td>Assumed Asbestos</td>
<td>Non-Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#2A – Fire Doors (Annex)</td>
<td>Separating building areas or rooms and/or boiler room entrances</td>
<td>~ 20 Doors</td>
<td>Assumed Asbestos</td>
<td>Non-Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#4 Gaskets and flanged fittings on HVAC Equipment</td>
<td>Within boiler room, pipe chases, and ceiling cavities</td>
<td>Unknown</td>
<td>Assumed Asbestos</td>
<td>Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#6 – MJF on heat supply, return, recirculation pipes and domestic water pipes.</td>
<td>These pipes are routed from the two boiler rooms to all parts of building above the ceiling.</td>
<td>~ 2836 linear feet</td>
<td>Sampled - ACM</td>
<td>Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#12 – Ceiling surface coat spray applied to the ceiling and beams</td>
<td>Main gym & auxiliary gym</td>
<td>~ 32 ft² at east and west end of the south heat duct on wall remaining</td>
<td>Sampled - ACM</td>
<td>Friable</td>
<td>Good</td>
</tr>
<tr>
<td>#16 – Transite board lining in fume hood sides/bottom</td>
<td>Rooms 502 and 511 (Chemistry labs)</td>
<td>2 hoods, ~75 ft² each.</td>
<td>Sampled - ACM</td>
<td>Non-Friable</td>
<td>Good</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. INTRODUCTION ... 4
2. METHODOLOGY ... 4
3. BUILDING DESCRIPTION AND OBSERVATIONS ... 4
4. RE-INSPECTION FINDINGS .. 5
 4.1. Asbestos-Containing Materials ... 5
 4.2. Non-Asbestos-Containing Materials .. 6
5. BULK SAMPLE ANALYTICAL RESULTS ... 6
6. DAMAGE AND HAZARD ASSESSMENT .. 6
 6.1. Assessment Category ... 6
 6.2. Damage Category .. 7
 6.3. Accessibility and Damage Potential .. 7
7. HAZARD RANKING AND RESPONSE ACTIONS .. 8
8. RECOMMENDATIONS .. 9
9. LIMITATIONS AND EXCLUSION OF WARRANTY ... 10
10. SIGN-OFF DOCUMENT ... 11

APPENDIX A Data Tables
APPENDIX B Six Month Surveillance Form
APPENDIX C Inspector/Management Planner Certification
1. INTRODUCTION

On July 28, 2009, Ms. Penny Weymiller, Environmental Safety & Health Engineer for Idaho Falls School District 91 conducted an three year asbestos re-inspection for the Skyline High School, 1767 Bluesky Drive, Idaho Falls, Idaho. The purpose of this activity was to inspect materials previously identified or assumed as being asbestos containing and assess their condition, as required by AHERA. The facility was visually inspected for ACM, all surfaces, structures, and mechanical systems were examined. All suspected ACM was touched to determine friability.

During the re-inspection, Ms. Weymiller determined if correct sampling schemes were used, identified any new materials that were overlooked or are new to the building, and recommended appropriate response actions.

2. METHODOLOGY

A survey of the structures and building materials used therein was conducted to observe, locate and identify suspect asbestos containing materials including, but not limited to: surfacing materials, pipe insulation, boiler and tank insulation, ceiling and floor tiles, siding, and roofing materials. All areas of the building accessible to observation were inspected. Areas that were not accessible at the time of the survey are listed in Section 3.

Information on the history of the building and any additions or renovations were obtained either by reviewing drawings of the structures, review of the existing asbestos management plan or via interview with other Idaho Falls School District 91 personnel. No bulk samples of suspect materials were collected during this inspection.

3. BUILDING DESCRIPTION AND OBSERVATIONS

Skyline High School was originally constructed in 1968. Original building had 179,181 sq ft 1991 added ten classrooms (15,162 sq ft) and activities gym addition (36,554 sq ft). 1991 Additions are asbestos free.

District 91 personnel completed the initial AHERA inspection on the building in 1988.

Renovations - No renovations have occurred since the last re-inspection.

Building Exterior – The exterior of the building is brick veneer and/or concrete block.

Roof – Composition and rubber membrane roof.

Foundation - Concrete
Interior walls - The inside dividing walls are constructed of cinderblock. The walls of the
restrooms, office spaces, and storage spaces are constructed out of sheetrock or cinder
block.

Floor Coverings and Substrate - Concrete, 12” vinyl floor tile, and ceramic tiles in
bathrooms.

Ceiling Coverings and Substrate - The ceilings are non-ACM 12” ceiling tiles, suspended
tile or sheetrock.

Attic Areas - None noted. Space above ceiling acts as plenum

Crawlspace - None noted. Basement mechanical areas.

Fire Doors - Metal and wooden fire doors assumed to be ACM

Inaccessible Areas - All areas were made accessible at the time of the
reinspection.

Heating System - Gas boiler heat pump system

Air Conditioning/Chiller - None

Ducting - Metal

Piping – Cast iron and galvanized insulated with fiberglass or asbestos mudded insulation
with asbestos mudded joint fittings. Some areas abated.

4. RE-INSPECTION FINDINGS

4.1. Asbestos-Containing Materials

Asbestos containing materials (ACM) when referring to school buildings means any material
or product which contains 1% or more asbestos. Asbestos is defined as the asbestiform
varieties of Chrysotile (serpentine); Crocidolite (riebeckite); Anthophyllite; Tremolite;
Amosite (cummingtonitegrunerite); and Actinolite. "Asbestos-containing building material"
(ACBM) means surfacing ACM, thermal system insulation ACM, or miscellaneous ACM
that is found in or on interior structural members or other parts of a school building.

Homogeneous areas of suspect ACM are identified as being ACM if the laboratory analysis
shows the material or product contains >1% asbestos, or if the inspector assumed the material
to be ACM. "Homogeneous area" means an area of surfacing material, thermal system
insulation material, or miscellaneous material that is uniform in color and texture.

Table 1 in Appendix A summarizes the list of homogeneous areas identified during the
original building inspection performed when the asbestos regulations first went into effect
and any items added in subsequent re-inspections. The current status of these materials and the basis for the determination is also listed in Table 1. Table 2 contains the hazard and damage assessment and identified response action for the ACM remaining in the building as well as any additional homogeneous areas identified during this re-inspection being added to the management plan. The re-inspection findings and subsequent recommendations for the ACM are outlined in Table 3. Each material is described by type of material and visual appearance.

"Friable" when referring to material in a school building means that the material, when dry, may be crumbled, pulverized, or reduced to powder by hand pressure, and includes previously nonfriable material after such previously nonfriable material becomes damaged to the extent that when dry it may be crumbled, pulverized, or reduced to powder by hand pressure.

"Non-friable" means material in a school building which when dry may not be crumbled, pulverized, or reduced to powder by hand pressure.

4.2. Non-Asbestos-Containing Materials

Most of the homogeneous areas originally suspected or assumed to be ACM were sampled according to AHERA sampling scheme to make a positive identification. Some items, such as fire doors and gaskets in HVAC equipment that are difficult to sample or would have their integrity destroyed by sampling continue to be assumed to contain asbestos. If a material is suspected or has been assumed to contain asbestos, laboratory analysis can be done to determine whether or not the material contains <1% asbestos.

5. BULK SAMPLE ANALYTICAL RESULTS

No bulk samples were collected from this building during the re-inspection.

6. DAMAGE AND HAZARD ASSESSMENT

Each homogeneous area of ACM has been assessed for existing damage, accessibility, potential for damage and assigned a hazard ranking which includes a response action. The hazard ranking is also based on the AHERA assessment category and current damage category. The hazard rankings and appropriate response actions are based on the information presented below. Complete definitions for the damage categories, accessibility, and associated response actions can be found in the AHERA regulations (40 CFR §763.80-.99).

6.1. Assessment Category

Each homogeneous area of friable ACM and asbestos-containing building material (ACBM) was classified into one of the following seven assessment categories.
(1) Damaged or significantly damaged thermal system insulation ACM.
(2) Damaged friable surfacing ACM.
(3) Significantly damaged friable surfacing ACM.
(4) Damaged or significantly damaged friable miscellaneous ACM.
(5) ACBM with potential for damage.
(6) ACBM with potential for significant damage.
(7) Any remaining friable ACBM or friable suspected ACBM.

Note that these categories apply to friable asbestos only. If the material is non friable, it is designated with an “X”. If the material has been removed or determine to not contain asbestos, it is designated N/A for “not applicable”.

6.2. Damage Category

The damage categories are defined for this re-inspection as follows:

"Undamaged" means the material had no visible damage, or extremely minor damage or surface marring (i.e., a room full of floor tile with only two or three small corners chipped off of the tile).

"Damaged" means the material had visible damage evenly distributed over less than 10% of its surface, or localized over less than 25% of its surface.

"Significantly Damaged" means the material had visible damage that is evenly distributed over 10% or more of its surface, or localized over 25% or more of its surface.

6.3. Accessibility and Damage Potential

Each homogeneous area of ACM was evaluated for accessibility to the building occupants and the general public, using the following accessibility categories:

"Inaccessible" means the material was located in an area that people had no reason to enter and could not access without special measures. One example would be above a solid ceiling. Another example of "Inaccessible is if an area is locked, and access is not possible. Damage potential would be low.

"Rarely" accessed identifies a material that was in a location that could be accessed but wasn't unless there was a specific need. An example would be a pipe tunnel. Another example would be a high ceiling that is out of reach and not subject to any specific disturbances. Damage potential would be low.
"Periodic" access identifies a material that was in a location that was accessible, was not occupied full time, but was accessed on a routine basis. An example would be a mechanical room or boiler room. Damage potential would be moderate-to-high.

"Continuous" access identifies a material that was in a location that was occupied full time and was within reach of the occupants, or was frequently subject to direct disturbance. Examples would be exposed floor tile or a normal height ceiling. Damage potential could be low, moderate or high depending on the material type (i.e., floor tile that is meant to be walked on has a low damage potential even with continuous access).

7. HAZARD RANKING AND RESPONSE ACTIONS

The ACM materials in the building were then assigned a hazard ranking from 1-7 (with seven being the highest hazard) based on AHERA material category, current condition, and damage potential due to accessibility, air flow, water, or vibration. Non friable materials are assigned a Hazard Ranking of 1. Each Hazard Rank has an associated Response Action. The Hazard Ranking matrix is presented below.

Hazard Ranking and Response Actions

<table>
<thead>
<tr>
<th>Hazard Rank</th>
<th>ACM Condition & AHERA Categories</th>
<th>Damage Potential</th>
<th>Response Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1. Damaged or significantly damaged thermal system insulation ACM</td>
<td>High potential for damage</td>
<td>1. Evacuate or isolate the area if needed. Remove the ACMMB (or enclose or encapsulate if sufficient to contain fibers). Repair of thermal system insulation allowed if feasible and safe. O & M required for all friable ACM.</td>
</tr>
<tr>
<td></td>
<td>3. Significantly damaged friable surfacing ACM</td>
<td>High/any potential contact High/any vibration High/any potential air erosion</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2. Damaged friable surfacing ACM</td>
<td>High potential for damage High/any potential contact High/any vibration High/any potential air erosion</td>
<td>2. Evacuate or isolate the area if needed. Remove, enclose, encapsulate, or repair to correct damage. Take steps to reduce potential for damage. O & M required for all friable ACM.</td>
</tr>
<tr>
<td></td>
<td>4. Damaged or significantly damaged friable miscellaneous ACM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2. Damaged friable surfacing ACM</td>
<td>Moderate potential for damage Moderate/low potential contact Moderate/low vibration Moderate/low potential air erosion</td>
<td>3. Remove, enclose, encapsulate or repair to correct damage. O & M required for all friable ACM</td>
</tr>
<tr>
<td></td>
<td>4. Damaged or significantly damaged friable miscellaneous ACM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2. Damaged friable surfacing ACM</td>
<td>Low potential for damage Low potential contact</td>
<td>4. Remove, enclose, encapsulate, or repair to correct damage. O & M required for all friable ACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Significantly damaged friable surfacing ACM</td>
<td>Low vibration</td>
<td>Low potential air erosion</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>6. ACBM with potential for significant damage</td>
<td>Current ACM condition is good</td>
<td>High potential for damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High/Moderate potential contact</td>
<td>Moderate low potential contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High/Moderate vibration</td>
<td>Moderate low potential vibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High/Moderate potential air erosion</td>
<td>Moderate low potential air erosion</td>
</tr>
<tr>
<td>5</td>
<td>O & M is required for all friable ACM</td>
<td>5. Evacuate or isolate the area if needed. Take steps to reduce the potential for damage. O & M required for all friable ACM and TSI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. ACBM with potential for damage</td>
<td>Current ACM condition is good; Moderate potential for damage, i.e., Moderate/low potential contact</td>
<td>Moderate/low potential vibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate/low potential air erosion</td>
<td>Moderate/low potential air erosion</td>
</tr>
<tr>
<td>6</td>
<td>O & M is required for all friable ACM</td>
<td>6. O & M is required for all friable ACM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Any remaining friable ACM or friable suspected ACBM OR Any remaining non-friable material</td>
<td>Current ACM condition is good; low potential for damage, i.e., Low potential contact</td>
<td>Low vibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low potential air erosion</td>
<td>Moderate low potential air erosion</td>
</tr>
<tr>
<td>7</td>
<td>O & M required for all friable ACM, but measures need not be as extensive as above.</td>
<td>7. O & M required for all friable ACM, but measures need not be as extensive as above.</td>
<td></td>
</tr>
</tbody>
</table>

8. RECOMMENDATIONS

The United States Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAP) includes standards for asbestos removal, transportation and disposal, and building renovation and demolition.

The EPA requires that friable ACM be removed from buildings prior to major renovation or demolition. Friable materials are those that can be crumbled, pulverized, or otherwise broken up by using hand or finger pressure when dry. The EPA defines friable ACM as any friable material containing more than one percent (1%) asbestos.

The EPA does not presently regulate typically non-friable materials until they become friable or dust is created. It is recommended that all non-friable building materials such as asphalt roofing and floor tiles be removed to facilitate renovation projects. These materials should otherwise be managed in place until demolition occurs.

Non-friable ACM can become friable over time through deterioration or when disturbed, such as during maintenance or removal operations. This can present a potential health hazard to employees. Accordingly, it is recommended that non-friable ACM be removed as part of scheduled demolition or renovation projects.
In consideration of the complex regulatory environment concerning the handling and removal of ACM, the following general recommendations also apply:

- Sampling of assumed asbestos containing materials should be continued as time and resources permit.
- Determination of more accurate quantities of asbestos containing materials as time and resources permit.
- Friable and non-friable ACM should ultimately be removed from District owned or managed buildings, preferably in conjunction with scheduled major renovation.
- Damaged or deteriorated ACM, especially if friable, should be repaired or removed as soon as possible.
- Regulated ACM may be handled only by qualified and EPA accredited asbestos abatement companies.
- ACM in District buildings should be protected, managed in place and left undisturbed to the maximum extent possible until removed.
- AHERA regulations require that all maintenance and custodial staff and other persons who will work in areas where they may come into contact with ACM receive two hours of AHERA accredited asbestos awareness training, be advised of the hazardous nature of asbestos and be cautioned to have only qualified, properly equipped persons work with ACM. In this regard, specific operation and maintenance practices should be followed for each building where ACM is located.
- Stringent precautions should be taken to insure that ACM is not introduced into the school buildings during renovations.

9. LIMITATIONS AND EXCLUSION OF WARRANTY

This AHERA Three Year Re-inspection was performed using procedures and a level of diligence typically exercised by professional consultants performing similar services. No asbestos survey can completely eliminate uncertainty regarding the presence of ACM; however, the level of diligence and investigative procedures used are intended to reduce potential uncertainty regarding the presence of ACM. The procedures used for this re-inspection attempt to establish a balance between the competing goals of limiting investigative costs, time, and building damage, and reducing the uncertainty about unknown conditions. Therefore, the determinations in this report should not be construed as a guarantee that all ACM present in the subject property has been included in this report.
On July 28, 2009, Ms. Penny Weymiller, Idaho Falls School District 91 Environmental Safety Health Engineer conducted an asbestos survey and assessment the Skyline High School, 1767 Bluesky Drive, Idaho Falls, Idaho. No bulk samples of suspect asbestos-containing materials were collected during this inspection. The condition of all friable and non-friable asbestos-containing materials was assessed at the time of the re-inspection. The following AHERA accredited inspector conducted the re-inspection and assessment and made recommendations for managing the ACM found in this building based on the re-inspection information. The AHERA certifications can be found in Appendix C of this report.

Penny Weymiller
AHERA Accredited Inspector/ Management Planner/Project Designer
APPENDIX A
DATA TABLES

TABLE 1 AHERA Homogeneous Area Information from Asbestos Management

TABLE 2 Damage/Hazard Assessment & Response Actions

TABLE 3 Reinspection Findings and Recommendations
Table 1: AHERA Homogeneous Area Information Abstracted from Management Plan

Skyline High School Date of Last AHERA Re-Inspection: 07/2006

<table>
<thead>
<tr>
<th>Homogeneous Area</th>
<th>Material Description</th>
<th>Material Category</th>
<th>Asbestos Content</th>
<th>Friability</th>
<th>AHERA Assessment Category (1-7, X, N/A)</th>
<th>Location of Material</th>
<th>Response actions, changes, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12" floor tile and mastic. Approx. 9633 ft² tile remaining.</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>2A</td>
<td>Fire Doors - School. Metal and wooden doors w/ <100 in² glass</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>2B</td>
<td>Fire Doors - Annex. Metal and wooden doors w/ <100 in² glass</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>3</td>
<td>Safe Door - Office area</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>E</td>
<td>NF</td>
</tr>
<tr>
<td>4</td>
<td>Gaskets - All gaskets and flanged fittings in HVAC equipment</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>5</td>
<td>Plasterboard walls and ceilings - Main Building.</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>6</td>
<td>Heat supply, heat return pipes, domestic hot water supply and recirculation pipes, domestic</td>
<td>TSI Surfacing Misc</td>
<td>Assumed</td>
<td>X</td>
<td>Yes</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Material Type</td>
<td>Assumed</td>
<td>Yes</td>
<td>No</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>7</td>
<td>Cold water supply pipes with mudded joint fittings. Approx. 2036 LF remaining.</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Hot Water Storage Tank - "C" fan room. Glass insulation w/ approx. 250 ft2 ACM mudded coating insulation.</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Kiln Lining Transite Board, Room 11 (Craft Room) Approx. 45 ft2</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Vibration Boots - Neoprene type with fiberglass threads installed on the fans and air handlers in "C" and "D" fan rooms, north and south upper mechanical rooms and roof area above industrial (vocational) arts area</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Suspended Ceiling Tile, Armstrong 942 - Approx. 96518 ft2 of 2"x4" "lay in" ceiling tile</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Ceiling Tile, metal faced - Approx. 5300 ft2 of metal faced ceiling tile with a fiber backing that appears to be a wood product.</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Cement-like ceiling surface coat applied to the ceiling and beams of the Main gym & auxiliary gym. Approx. 32 ft2 remaining.</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Plaster</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>Sound Deadening Blocks - Vocal Room</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Material</td>
<td>Assumed</td>
<td>X</td>
<td>Status</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>---</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fire Bricks in Welding Tables - Welding Shop</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>N/A</td>
<td>Sampled - Non ACM</td>
</tr>
<tr>
<td>16</td>
<td>Transite board bottoms and sides of two fume hoods (a.k.a. science experiment booths), Approx. 75 ft² each</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>17</td>
<td>Ceiling surface coat - South gym balcony (exit) stairs</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>18</td>
<td>Vinyl linoleum - Drivers Ed Bldg located west of the main school</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>19</td>
<td>12" x 12" wall tile - Gym press box walls</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>20</td>
<td>Vinyl Countertop - Home Economics Room, southeast corner, Approx. 1140 ft²</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>21</td>
<td>Sinks/counter tops - science rooms (Rooms 501, 502, 503, 511, 512, 521, 522, 523) Approx 1651 ft² of countertop and 65 sinks</td>
<td>TSI</td>
<td>Assumed</td>
<td>Yes</td>
<td>X</td>
<td>F</td>
<td>NF</td>
</tr>
</tbody>
</table>
Table 2: Damage/Hazard Assessment, Accessibility, Response Actions for ACM Skyline High School

<table>
<thead>
<tr>
<th>Homogeneous Area</th>
<th>Damage Category</th>
<th>AHERA Assessment Category</th>
<th>Damage Type & Cause</th>
<th>Accessibility</th>
<th>Potential for Damage</th>
<th>Response Action</th>
<th>Hazard Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1 12" Floor tile and mastic</td>
<td>No Damage</td>
<td>X</td>
<td>N/A</td>
<td>Continuous</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>#2A & 2B Fire Doors – School & Annex. Metal and wooden doors w/ <100 in2 glass</td>
<td>No Damage</td>
<td>X</td>
<td>N/A</td>
<td>Continuous</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td># 4 Gaskets and flanged fittings in HVAC Equipment</td>
<td>No Damage</td>
<td>X</td>
<td>N/A</td>
<td>Rarely</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td># 6 MJF on heat supply, return, recirculation pipes and domestic water pipes.</td>
<td>No Damage</td>
<td>5</td>
<td>N/A</td>
<td>Rarely</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>#12 Ceiling Surface Coat on ceiling and beams –gym</td>
<td>No Damage</td>
<td>5</td>
<td>N/A</td>
<td>Rarely</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td># 16 Science Fume Hood sides/bottom</td>
<td>No Damage</td>
<td>X</td>
<td>N/A</td>
<td>Rarely</td>
<td>Low</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Homogeneous Area</td>
<td>Quantity</td>
<td>Friability</td>
<td>AHERA Assess. Cat. (1-7, N/A)</td>
<td>Justification of assessment category</td>
<td>Chg. in assessment.</td>
<td>Preventive measures, response actions, and initial/additional cleanings</td>
<td>Schedule</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>1 - 12" Floor tile and mastic</td>
<td>~ 9633 ft²</td>
<td>NF</td>
<td>X</td>
<td>Material is non-friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>2A-B - Fire doors (Main building & Annex)</td>
<td>TBD</td>
<td>NF</td>
<td>X</td>
<td>Material is non-friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>4 - Gaskets and flanged fittings in HVAC equipment</td>
<td>TBD</td>
<td>NF</td>
<td>X</td>
<td>Material is non-friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>#6 - Heat supply, return, recirculation pipes and domestic water pipes w/MJF.</td>
<td>~2836 LF</td>
<td>F</td>
<td>5</td>
<td>Material is friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>#12 - Ceiling surface coat spray applied to the ceiling and beams</td>
<td>~32 ft²</td>
<td>F</td>
<td>5</td>
<td>Material is friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>#16 - Transite board lining in fume hood sides/bottom</td>
<td>2 hoods ~75 ft² each</td>
<td>NF</td>
<td>X</td>
<td>Material is non-friable and in good condition</td>
<td>No</td>
<td>6) Continue O & M procedures, record any change in condition, do not make friable by buffing, drilling, cutting</td>
<td>N/A N/A</td>
</tr>
</tbody>
</table>

AHERA Inspector: Penny A. Weymiller
Signature: Penny Weymiller
Accreditation Expiration Date: Idaho 01/09/2010

AHERA Management Planner: Penny A. Weymiller
Signature: Penny Weymiller
Date: 20110317 1049:40-06'00'
Accreditation Expiration Date: Idaho 12/4/2010

I, the LEA’s Designated Person, have read and understand the above recommendations Penny Weymiller
APPENDIX B

SIX MONTH SURVEILLANCE FORM
Skyline High School
1767 Bluesky Drive
Idaho Falls, Idaho 83402

Six Month Periodic Surveillance Form

Surveillance Performed by:
(This surveillance may be performed by anyone on staff who has had 2-hour asbestos awareness training)

Signature: ___________________________ Date: __________________

<table>
<thead>
<tr>
<th>Homogeneous Area Designation and Material</th>
<th>Location</th>
<th>Quantity</th>
<th>Current Condition</th>
<th>Condition Change</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1 - 12" Floor tile and mastic</td>
<td>Numerous 12’ tile patterns/colors throughout school</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 2 - Fire Doors (Main Building)</td>
<td>Doors separating building areas or room with less than 100 cm2 of glass.</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 2A - Fire Doors (Annex)</td>
<td>Doors separating building areas or room with less than 100 cm2 of glass.</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 4 Gaskets and flanged fittings on HVAC Equipment</td>
<td>Within boiler room, pipe chases, and ceiling cavities</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 6 - MJF on heat supply, return, recirculation pipes and domestic water pipes.</td>
<td>These pipes are routed from the two boiler rooms to all parts of building above the ceiling.</td>
<td>~ 2836 linear feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#12 - Ceiling surface coat spray applied to the ceiling and beams</td>
<td>Main gym & auxiliary gym</td>
<td>~ 32 ft2 at east and west end of the south heat duct on wall remaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16 - Transite board lining in fume hood sides/bottom</td>
<td>Rooms 502 and 511 (Chemistry labs)</td>
<td>2 hoods, ~75 ft2 each.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

INSPECTOR, MANAGEMENT PLANNER CERTIFICATION
Certificate of Completion

This is to certify that
Penny Weymiller
has satisfactorily completed
16 hours of training as an
AHERA Management Planner
in compliance with TSCA Title II AHERA 40 CFR Part 763
U.S. EPA Region 10 Accredited

October 10, 2008
Instructor: JoAnn Copperud
Exp. Date: October 10, 2009

RGA Environmental, Inc Seattle, WA
1730 Minor Avenue Suite 900 • Seattle, Washington 98101 • (206) 281-8858
THIS CERTIFIES THAT

Penny Weymiller

HAS COMPLETED THE REQUISITE TRAINING FOR
ASBESTOS ACCREDITATION UNDER TSCA TITLE II
ATTENDED AN ANNUAL REFRESHER COURSE IN
PRACTICES AND PROCEDURES IN
ASBESTOS ABATEMENT

Asbestos Inspector Refresher

DATE: January 9, 2009
NUMBER: 290073
EXPIRES: January 9, 2010
CREDITS: 0.340 CEUs / .50 ABIH CM points

Connie Crandall, MBA, MA
Continuing Education Director
Inspection Statement

These buildings were inspected per rules and guidance 763.85 - visually inspecting all areas and identification of homogeneous areas of ACBM. Determination for friability and non-friability was made by touching and either sampling or assuming that the suspected material contained asbestos with appropriate inventory where samples or assumed ACM were located.

Skyline high school located at 1767 Blue Sky Drive, Idaho Falls, ID, was inspected for ACM by Mr. Von Buxton.

Von has been accredited by KUNATYC as inspector - Management Planner, and received #VII KU 85780-04. The inspection process was completed 8-5-88.

ADDENDUM
1991 Reinspection.
Above statements remain unchanged with the addition of:

Tom Henrie
Inspector/Management Planner 8/21/91
Rocky Mountain Center #518-34-7835
S.S. #518-34-7835
Preface

Skyline High School and annex located at 1767 Blue Sky Drive, Idaho Falls, ID, was inspected for ACM by Mr. Von Buxton.

Von has been accredited by K.U.N.A.T.C. as an Inspector, Management Planner, and received #VII KU 85780-04. The inspection process was conducted August 12, 1988.

The management plan was done by Mr. Von Buxton, #VII KU 85780-04, and Mr. Gene C. Baird in August of 1988. Gene has been certified by Rocky Mountain Center for Occupational and Environmental Health, and was assigned #519-62-9143.

Inspection Review

Skyline High School is a ground level building with the exception of a second level gymnasium seating area, with two mechanical rooms in the same area. Two boiler/fanrooms are located in separate basement levels. The heat piping rises from the boiler rooms and is routed above the ceiling area to forced air units throughout the building. Domestic water supply is also routed above the ceiling area.

Student enrollment is 980. The building was constructed in 1966 and approximate square footage is 179,180.

There are friable ACM at the present time in Skyline High School located "gym ceiling area".

ACBM with potential to become friable is as follows: floor tile, fire doors, safedoor, gaskets in HVAC equipment and flanged fittings, plasterboard, mudded fittings, hot water storage tank, kiln area lining board (transite)

ADDENDUM

1991 Reinspection.
Above statements remain unchanged with the addition of:

Tom Henrie
Inspector/Management Planner 8/21/91
Rocky Mountain Center #518-34-7835
S.S. #518-34-7835
Skyline High School, located at 1767 Blue Sky Drive, Idaho Falls, Idaho, was re-inspected under CFR Part 40, section 763.85, for A.C.M. by Tom Henrie.

The re-inspection process was conducted beginning December, 1991.

The management plan was done by Gene Baird/Tom Henrie in January, 1992.

Inspector/Management Planners

Gene C. Baird Signature

Accreditation No. 519-62-9143 Agency Rocky Mountain Center University of Utah

Von E. Buxton Signature

Accreditation No. VII KU85780-04 Agency National Asbestos Training Center University of Kansas

Tom Henrie Signature

Accreditation No. 518-34-7835 Agency Rocky Mountain Center University of Utah
There are no changes, additions or deletions to this management plan based on the above reinspection. Except the additional sampling of Plaster & Plasterboard.
SKYLINE HIGH SCHOOL Located at 1767 BLUE SKY DR.

Idaho Falls, Idaho was re-inspected under 40 CFR Part 763.85 for Asbestos Containing Building Materials by Tom Henrie.

The re-inspection process was completed in August, 1997. The Management Plan was up-dated by Gene C. Baird / Tom Henrie in August, 1997.

INSPECTORS/MANAGEMENT PLANNERS

Gene C. Baird Signature Date 8-5-87
Accreditation # 519-62-9143 Agency Rocky Mountain Center University of Utah

Tom Henrie Signature Date 8-5-97
Accreditation # 518-34-7835 Agency Rocky Mountain Center University of Utah

Von E. Buxton Signature Date
Accreditation # VII KU85780-04 Agency National Asbestos Training Center University of Kansas

There are no changes, additions or deletions to this Management Plan based on the above re-inspection. Except the sampling of Counter Tops in the Science area.
Re-inspection Preface

Skyline High School located at 1776 Blue Sky dr.

Idaho Falls, ID was re-inspected under 40 CFR Part 763.85 AHERA for asbestos containing building materials by Mike Clark.

The re-inspection process was completed in August / 2003.

The Management Plan was updated by Mike Clark in August / 2003.

Inspectors/Management Planners

Gene C. Baird
Accreditation #519-62-9143
Agency: Rocky Mountain Center, University of Utah

Michael Clark
Accreditation #543-58-189
Agency: N.B.A. Asbestos Training, Idaho Falls, Idaho

There are changes and deletions to this Management Plan based on the above re-inspection. Please refer to attached document.
Skyline High School

In May 2003 at Skyline High School approximately 93 MJF elbow/fittings or 31 lin ft of TSI were removed from the C hall fan room; and approximately 250 sq ft of ACM coating on the domestic hot water storage tank was also removed by Idaho Abatement LLS, using the cut and wrap method for the elbow fittings and full containment for the removal on the hot water storage tank.

In June 2003, approximately 400 MJF were removed from the ceiling areas of the northwest corner of Skyline High School including office and commons areas, D, F, and G halls, all shop areas and corresponding classrooms, by Eagle Environmental Inc. using the cut and wrap method.

In August 2003, approximately 4,000 sq ft ACM tile was removed from the wrestling room using infrared method. All other work was done either in containment with negative air using respirators or using the cut and wrap method, and was done in accordance with all state and federal laws. An independent third party Industrial Hygienist, Claude Dahlk of JBR Environmental Consulting, who has all the necessary certifications, oversaw the work and took air samples, to include final clearance samples that were below P.E.L.

See enclosed colored map.
Disposal manifest enclosed.
Re-inspection Preface

Skyline High School located at 1767 Blue Sky Dr. Idaho Falls, ID was re-inspected under 40 CFR Part 763.85 AHERA for asbestos containing building materials by Mike Clark.

The re-inspection process was completed in July / 2006. Then reviewed by District Asbestos Program Director Gene Baird.

The Management Plan was updated by Mike Clark in August / 2006.

Inspectors/Management Planners

Gene C. Baird
Accreditation #519-62-9143
Agency: Rocky Mountain Center, University of Utah

Michael Clark
Accreditation #543-58-189
Agency: N.B.A. Asbestos Training, Idaho Falls, Idaho

There are no changes, additions or deletions to this Management Plan based on the above re-inspection.